NAME	DATE	BAND
INTRODUCTION TO OPTIMIZATION Calculus Packer Collegiate institute		

Challenge #1

Draw the rectangle you came up with in Desmos. (The equation of the line was x + 5y = 10.)

Challenge #2

Draw the rectangle you came up with in Desmos. (The equation of the parabola was $y = 16 - x^2$.)

Challenge #3

Challenge #4

Draw the isosceles trapezoid you came up with in Desmos. (The equation of the parabola was $y = 4 - x^2$.)

Challenge #2 (reprise)

Now let's plot the area of each rectangle as a function of the *x*-coordinate of its corner in Quadrant I.

a) To get started, let's revist the rectangle you drew for Challenge #2 the first time. Record the following:

The *x*-coordinate of the corner in Quadrant I: ______ The area of the rectangle: ______

b) Plot this point below. Then, use Desmos to help you plot any eight additional points.

- c) These points seem to outline a curve. Gosh, wouldn't it be great if we could figure out an equation for this curve? (Yes / No / Maybe So)
- d) Fill in the blank below. Then, label all of the sides of the rectangle in terms of *a*.

e) Write down a function for the area of the rectangle as a function of *a*:

RectArea(*a*) = _____

f) Plot your function in Desmos! Then, fill in the blank:

The maximum possible area was approximately _____, and this occurred when *a* was approximately _____.

g) Sketch the best rectangle below, labeling its width, height, and area:

Calculus to the rescue!

Our next question is this—how could we have determined the dimensions of this rectangle without Desmos?

- a) Remind me—if f(x) has a maximum (a peak) at a certain x-value—like x = a, for example—what must be the value of f'(a)?
- b) Determine RectArea'(x).

c) Let's figure out what our candidate points are by setting RectArea'(x) = 0 and solving for x.

d) Finally, determine the best rectangle's <u>exact</u> dimensions and area.