## INTRODUCTION TO OPTIMIZATION

Calculus | Packer Collegiate institute

## Challenge \#1

Draw the rectangle you came up with in Desmos. (The equation of the line was $x+5 y=10$.)


Width: $\qquad$ Height: $\qquad$ Area: $\qquad$

## Challenge \#2

Draw the rectangle you came up with in Desmos. (The equation of the parabola was $y=16-x^{2}$.)


Width: $\qquad$ Height: $\qquad$ Area: $\qquad$

## Challenge \#3

Draw the isosceles triangle you came up with in Desmos. (The equation of the parabola was $y=9-x^{2}$.)


Width: $\qquad$ Height: $\qquad$ Area: $\qquad$

## Challenge \#4

Draw the isosceles trapezoid you came up with in Desmos. (The equation of the parabola was $y=4-x^{2}$.)


Width: $\qquad$

Height: $\qquad$

Area: $\qquad$

## Challenge \#2 (reprise)

Now let's plot the area of each rectangle as a function of the $x$-coordinate of its corner in Quadrant I.
a) To get started, let's revist the rectangle you drew for Challenge \#2 the first time. Record the following: The $x$-coordinate of the corner in Quadrant I: $\qquad$ The area of the rectangle: $\qquad$
b) Plot this point below. Then, use Desmos to help you plot any eight additional points.

c) These points seem to outline a curve. Gosh, wouldn't it be great if we could figure out an equation for this curve? (Yes / No / Maybe So )
d) Fill in the blank below. Then, label all of the sides of the rectangle in terms of $a$.

e) Write down a function for the area of the rectangle as a function of $a$ :

$$
\operatorname{RectArea}(a)=
$$

$\qquad$
f) Plot your function in Desmos! Then, fill in the blank:

The maximum possible area was approximately $\qquad$ , and this occurred when $a$ was approximately $\qquad$ .
g) Sketch the best rectangle below, labeling its width, height, and area:

## Calculus to the rescue!

Our next question is this-how could we have determined the dimensions of this rectangle without Desmos?
a) Remind me-if $f(x)$ has a maximum (a peak) at a certain $x$-value-like $x=a$, for example-what must be the value of $f^{\prime}(a)$ ?
b) Determine RectArea' $(x)$.
c) Let's figure out what our candidate points are by setting RectArea' $(x)=0$ and solving for $x$.
d) Finally, determine the best rectangle's exact dimensions and area.

